Output list
Journal article
A new paradigm for the dynamics of the early Universe
Published 20/11/2019
Classical and Quantum Gravity, 36, 24, 245016
This paper invokes a new mechanism for reducing a coupled system of fields (including Einstein’s equations without a cosmological constant) to equations that possess solutions exhibiting characteristics of immediate relevance to current observational astronomy.
Our approach is formulated as a classical Einstein-vector-scalar-Maxwell-fluid field theory on a spacetime with three-sphere spatial sections. Analytic cosmological solutions are found using local charts familiar from standard LFRW cosmological models. These solutions can be used to describe different types of evolution for the metric scale factor, the Hubble, jerk and de-acceleration functions, the scalar spacetime curvature and the Kretschmann invariant constructed from the Riemann-Christoffel spacetime curvature tensor. The cosmological sector of the theory accommodates a particular single big-bang scenario followed by an eternal exponential acceleration of the scale factor. Such a solution does not require an externally prescribed fluid equation of state and leads to a number of new predictions including a current value of the “jerk” parameter, “Hopfian-like” source-free Maxwell field configurations with magnetic helicity and distributional “bi-polar” solutions exhibiting a new charge conjugation symmetry.
An approximate scheme for field perturbations about this particular cosmology is explored and its consequences for a thermalisation process and a thermal history are derived, leading to a prediction of the time interval between the big-bang and the decoupling era. Finally it is shown that field couplings exist where both vector and scalar localised linearised perturbations exhibit dispersive wave-packet behaviours. The scalar perturbation may also give rise to Yukawa solutions associated with a massive Klein-Gordon particle. It is argued that the vector and scalar fields may offer candidates for “dark-energy” and “dark-matter” respectively.
Journal article
Aspects of quantum energy and stress in inhomogeneous unbounded dielectric continua
Published 04/10/2018
Reviews in Mathematical Physics, 31, 01, 1950002
This article explores a number of issues associated with the problem of calculating and detecting electromagnetic quantum induced energy and stress in a stationary dielectric material with a smooth inhomogeneous polarizability. By concentrating on a particular system composed of an ENZ-type (epsilon-near-zero) meta-material, chosen to have a particular anisotropic and smooth inhomogeneous permittivity, confined in an infinitely long perfectly conducting open rectangular waveguide, we are able to deduce analytically from the source-free Maxwell’s equations and their boundary conditions a complete set of bounded harmonic electromagnetic evanescent eigen-modes and their associated eigen-frequencies. Since these solutions prohibit the existence of asymptotic scattering states in the guide, the application of the conventional Lifshitz approach to the Casimir stress problem becomes uncertain. An alternative approach is adopted based upon the spectral properties of the system and a regularization scheme constructed with direct applicability to more general systems composed of dielectrics with smooth inhomogeneous permittivities and open systems that may only admit evanescent modes. This more general scheme enables one, for the first time, to prescribe precise criteria for the extraction of finite quantum expectation values from regularized mode sums together with error bounds on these values, and is used to derive analytic or numeric results for regularized electromagnetic ground state expectation values in the guide.
Journal article
Aspects of quantum energy and stress in inhomogeneous unbounded dielectric continua
Published 10/2018
Reviews in Mathematical Physics, 31, 1, 1950002
This article explores a number of issues associated with the problem of calculating and detecting electromagnetic quantum induced energy and stress in a stationary dielectric material with a smooth inhomogeneous polarizability. By concentrating on a particular system composed of an ENZ-type (epsilon-near-zero) meta-material, chosen to have a particular anisotropic and smooth inhomogeneous permittivity, confined in an infinitely long perfectly conducting open rectangular waveguide, we are able to deduce analytically from the source-free Maxwell’s equations and their boundary conditions a complete set of bounded harmonic electromagnetic evanescent eigen-modes and their associated eigen-frequencies. Since these solutions prohibit the existence of asymptotic scattering states in the guide, the application of the conventional Lifshitz approach to the Casimir stress problem becomes uncertain. An alternative approach is adopted based upon the spectral properties of the system and a regularization scheme constructed with direct applicability to more general systems composed of dielectrics with smooth inhomogeneous permittivities and open systems that may only admit evanescent modes. This more general scheme enables one, for the first time, to prescribe precise criteria for the extraction of finite quantum expectation values from regularized mode sums together with error bounds on these values, and is used to derive analytic or numeric results for regularized electromagnetic ground state expectation values in the guide.
Journal article
Chirality in gravitational and electromagnetic interactions with matter
Published 08/06/2018
International Journal of Geometric Methods in Modern Physics, 15, S.1, 1840004
It has been suggested that single and double jets observed emanating from certain astrophysical objects may have a purely gravitational origin. We discuss new classes of pulsed gravitational wave solutions to the equation for perturbations of Ricci-flat spacetimes around Minkowski metrics, as models for the genesis of such phenomena. We discuss how these solutions are motivated by the analytic structure of spatially compact finite energy pulse solutions of the source-free Maxwell equations generated from complex chiral eigen-modes of a chirality operator. Complex gravitational pulse solutions to the linearized source-free Einstein equations are classified in terms of their chirality and generate a family of non-stationary real spacetime metrics. Particular members of these families are used as backgrounds in analyzing time-like solutions to the geodesic equation for test particles. They are found numerically to exhibit both single and double jet-like features with dimensionless aspect ratios suggesting that it may be profitable to include such backgrounds in simulations of astrophysical jet dynamics from rotating accretion discs involving electromagnetic fields.
Journal article
On gravitational chirality as the genesis of astrophysical jets
Published 05/01/2017
Classical and Quantum Gravity, 34, 3, 1 - 19
It has been suggested that single and double jets observed emanating from certain astrophysical objects may have a purely gravitational origin. We discuss new classes of plane-fronted and pulsed gravitational wave solutions to the equation for perturbations of Ricci-flat spacetimes around Minkowski metrics, as models for the genesis of such phenomena. These solutions are classified in terms of their chirality and generate a family of non-stationary spacetime metrics. Particular members of these families are used as backgrounds in analysing time-like solutions to the geodesic equation for test particles. They are found numerically to exhibit both single and double jet-like features with dimensionless aspect ratios suggesting that it may be profitable to include such backgrounds in simulations of astrophysical jet dynamics from rotating accretion discs involving electromagnetic fields.
Journal article
Axionic suppression of plasma wakefield acceleration
Published 2016
Journal of Physics A: Mathematical and Theoretical, 49, 38, 385501
Contemporary attempts to explain the existence of ultra-high energy cosmic rays using plasma-based wakefield acceleration deliberately avoid non-standard model particle physics. However, such proposals exploit some of the most extreme environments in the Universe and it is conceivable that hypothetical particles outside the standard model have significant implications for the effectiveness of the acceleration process. Axions solve the strong CP problem and provide one of the most important candidates for cold dark matter, and their potential significance in the present context should not be overlooked. Our analysis of the field equations describing a plasma augmented with axions uncovers a dramatic axion-induced suppression of the energy gained by a test particle in the wakefield driven by a particle bunch, or an intense pulse of electromagnetic radiation, propagating at ultra-relativistic speeds within the strongest magnetic fields in the Universe.
Journal article
The dynamics of compact laser pulses
Published 2016
Journal of Physics A: Mathematical and Theoretical, 49, 26, 265203
We discuss the use of a class of exact finite energy solutions to the vacuum source-free Maxwell equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged point particles. These compact solutions are classified in terms of their chiral content and their influence on particular charge configurations in space. The results of such classical interactions motivate a phenomenological quantum description of a propagating laser pulse in a medium in terms of an effective quantum Hamiltonian.
Journal article
Classical dynamics of free electromagnetic laser pulses
Published 10/2015
Nuclear Instruments and Methods in Physics Research B, 369, 40 - 44
We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged test particles. These solutions are classified in terms of their chiral content based on their influence on particular charge configurations in space. Such solutions offer a computationally efficient parameterization of compact laser pulses used in laser-matter simulations and provide a potential means for experimentally bounding the fundamental length scale in the generalized electrodynamics of Bopp, Landé and Podolsky.