Output list
Journal article
Dynamic analysis model of a Class E2 Converter for low power wireless charging links
Published 07/01/2019
IET Circuits, Devices and Systems, 13, 3, 399 - 405
A dynamic response analysis model of a Class E2 converter for wireless power transfer applications is presented. The converter operates at 200 kHz and consists of an induction link with its primary coil driven by a class E inverter and the secondary coil with a voltage-driven class E synchronous rectifier. A 7th order linear time invariant state-space model is used to obtain the eigenvalues of the system for the four modes resulting from the operation of the converter switches. A participation factor for the four modes is used to find the actual operating point dominant poles for the system response. A dynamic analysis is carried out to investigate the effect of changing the separation distance between the two coils, based on converter performance and the changes required of some circuit parameters to achieve optimum efficiency and stability. The results show good performance in terms of efficiency (90-98%) and maintenance of constant output voltage with dynamic change of capacitance in the inverter. An experiment with coils of dimension of 53× 43× 6 mm3 operating at a resonance frequency of 200 kHz, was created to verify the proposed mathematical model and both were found to be in excellent agreement.
Journal article
Direct flux control – sensorless control method of PMSM for all speeds – basics and constraints
Published 08/2017
Electronics Letters, 53, 16, 1110 - 1111
The limitations of sensorless control of permanent magnet synchronous machines (PMSMs) are discussed and a viable solution is proposed. The main concept of sensorless control of drives relies on additional information given by the machine during its normal operation. This information provided by the machine is essentially the back-electro motive force and the variance of the stator inductivity, which are dependent on the rotor position. Several approaches and methods have discussed these problems, and in most cases they are not avoidable and that some methods work better on certain speeds of the drives. The direct flux control (DFC) method to combat the above problems at all speeds is presented. The flux linkage signal which contains the necessary information about the rotor position can be measured between the neutral point of a PMSM and an artificial one. The mathematical derivation and the observations from the experiments show that this signal contains a second and a fourth harmonic, which can be used to calculate the rotor position. Furthermore, the limitations of implementing DFC are also addressed.