Abstract
This paper presents a multi-period unit commitment active and reactive power optimal management for microgrids under different market policies. The overall optimization problem is formulated by mixed integer quadratic programming by taking into considerations the environmental costs and the battery degradation cost against a comprehensive set of constraints. A typical low-voltage microgrid, which comprises of distributed generators, renewable energy resources, storage battery, and varieties of loads, are employed to implement and examine the proposed approach. The microgrid is comprehensively investigated with both grid-connected and isolated modes under minimum operation and emission cost and maximum overall profit policies. The results have revealed that the charging and discharging operations of storage battery typically reduce the total operation and emission costs and hence maximize overall profit, even considering the battery degradation.